The Great Escape?

A Quantitative Evaluation of the Fed’s Non-Standard Policies

Marco Del Negro, Andrea Ferrero
Gauti Eggertsson, Nobuhiro Kiyotaki
Federal Reserve Bank of New York and LSE/Princeton University

KDI, Conference in Honor of Christopher Sims; Seoul, May 27, 2011

Disclaimer: The views expressed are mine and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System
The Fed’s Response to a Black Swan

Source: Board of Governors of the Federal Reserve System, Release H.4.1

Del Negro, Ferrero, Eggertsson, Kiyotaki

The Great Escape?
Questions

• We incorporate the financial friction proposed by Kiyotaki and Moore (2008) – differences in liquidity across assets – into a DSGE model with standard real and nominal rigidities and ask:

 1. Can a KM-type liquidity shock quantitatively generate the crisis?

 • Large response of macro and financial variables.
Questions

• We incorporate the financial friction proposed by Kiyotaki and Moore (2008) – differences in liquidity across assets – into a DSGE model with standard real and nominal rigidities and ask:

1. Can a KM-type liquidity shock quantitatively generate the crisis?
 - Large response of macro and financial variables.

2. What is the quantitative effect of unconventional monetary policy in such a setting?
 - In an environment where standard monetary policy no longer works (the “great escape” from the liquidity trap)
Main results

![Graphs showing output and inflation over quarters.](image)
The model: Kiyotaki-Moore (Shi version)

1. Households \(=\) \{ entrepreneurs with probability \(\kappa\) \\
 \text{(investment opportunity)} \\
 workers with probability \(1 - \kappa\) \}

2. Government
The model: Kiyotaki-Moore (Shi version) + a few more actors and a few more rigidities

1. Households = \{ entrepreneurs with probability κ \\
 \hspace{1cm} (investment opportunity) \\
 workers with probability $1 - \kappa$

2. Government

3. Intermediate firms \Rightarrow sticky prices

4. Final good producing firms

5. Labor packers \Rightarrow sticky wages

6. Capital producing firms \Rightarrow investment adjustment cost

Del Negro, Ferrero, Eggertsson, Kiyotaki The Great Escape?
Households

• Balance sheet:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal bonds</td>
<td>own equity issued</td>
</tr>
<tr>
<td>(b_{t+1}/P_t)</td>
<td>(q_t n_{t+1}^I)</td>
</tr>
<tr>
<td>equity of other households</td>
<td>net worth</td>
</tr>
<tr>
<td>(q_t n_{t+1}^O)</td>
<td>(q_t n_{t+1})</td>
</tr>
<tr>
<td>capital stock</td>
<td>(+ b_{t+1}/P_t)</td>
</tr>
<tr>
<td>(q_t k_{t+1})</td>
<td></td>
</tr>
</tbody>
</table>

where \(n_t \equiv n_t^O + (k_t - n_t^I) \).
Households

- Balance sheet:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal bonds b_{t+1}/P_t</td>
<td>own equity issued $q_t n_{t+1}$</td>
</tr>
<tr>
<td>equity of other households $q_t n^O_{t+1}$</td>
<td>net worth $q_t n_{t+1}$ + b_{t+1}/P_t</td>
</tr>
<tr>
<td>capital stock $q_t k_{t+1}$</td>
<td></td>
</tr>
</tbody>
</table>

where $n_t \equiv n^O_t + (k_t - n^I_t)$.

- Income: $r_t^k n_t$, transfers τ_t, profits $\int \mathcal{P}_t(i) di$ and $C(i_t)$
Households

- **Balance sheet:**

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal bonds (b_{t+1}/P_t)</td>
<td>own equity (q_t n_{t+1}^l)</td>
</tr>
<tr>
<td>equity of other households (q_t n_{t+1}^O)</td>
<td>net worth (q_t n_{t+1}^1 + b_{t+1}/P_t)</td>
</tr>
<tr>
<td>capital stock (q_t k_{t+1})</td>
<td></td>
</tr>
</tbody>
</table>

where \(n_t \equiv n_t^O + (k_t - n_t^l) \).

- **Income:** \(r^k_t n_t \), transfers \(\tau_t \), profits \(\int P_t(i) di \) and \(C(i_t) \)

- **Utility** \(E_0 \sum_t u(c_t, h_t) \), where \(c_t = \kappa c_t^e + (1 - \kappa)c_t^w \), \(h_t = (1 - \kappa)h_t^w \)

\[
\begin{align*}
k_{t+1} &= \lambda k_t + \kappa i_t^e \\
n_{t+1} &= \kappa n_{t+1}^e + (1 - \kappa)n_{t+1}^w \\
b_{t+1} &= \kappa b_{t+1}^e + (1 - \kappa)b_{t+1}^w
\end{align*}
\]
Entrepreneurs & Frictions

\[c_t^e + p_t i_t^e + q_t (n_{t+1}^e - i_t^e) + \frac{b_{t+1}^e}{P_t} = (r_t^k + \lambda)n_t + \frac{R_{t-1}b_t}{P_t} + \tau_t + \int P_t(i) dP_t + C(i_t) \]
Entrepreneurs & Frictions

\[\begin{align*}
 c^e_t + p^l_t i^e_t + q_t (n^e_{t+1} - i^e_t) + \frac{b^e_{t+1}}{P_t} &= (r^k_t + \lambda) n_t + \frac{R_{t-1} b_t}{P_t} + r_t + \int P_t(i) di + C(i_t)
\end{align*} \]
\[c_t^e + p_t^e i_t^e + q_t (n_{t+1}^e - i_t^e) + \frac{b_{t+1}^e}{P_t} = (r_t^k + \lambda) n_t + \frac{R_{t-1} b_t}{P_t} + \tau_t + \int P_t(i) d_i + C(i_t) \]

\[n_{t+1} \geq (1 - \phi_t) \lambda n_t^e + (1 - \theta)i_t^e \]

Borrowing Constraint
Entrepreneurs & Frictions

\[c_t^e + p_t^e i_t^e + q_t (n_{t+1}^e - i_t^e) + \frac{b_{t+1}^e}{P_t} = (r_t^k + \lambda)n_t + \frac{R_{t-1}b_t}{P_t} + \tau_t + \int P_t(i)di + C(i_t) \]

*\(n_{t+1} \geq \frac{(1 - \phi_t) \lambda n_t}{(1 - \theta)i_t^e} \)
\text{Resaleability Constraint}
Entrepreneurs & Frictions

\[c_t^e + p_t^l i_t^e + q_t(n_{t+1}^e - i_t^e) + \frac{b_{t+1}^e}{P_t} = (r_t^k + \lambda)n_t + \frac{R_{t-1}b_t}{P_t} + \tau_t + \int P_t(i)di + C(i_t) \]

- \[n_{t+1} \geq (1 - \phi_t)\lambda n_t^e + (1 - \theta)i_t^e \]
- \[b_{t+1}^e \geq 0 \]
Entrepreneurs & Frictions

\[c_t^e + p_t^li_t^e + q_t(n_{t+1}^e - i_t^e) + \frac{b_{t+1}^e}{P_t} = (r_t^k + \lambda)n_t + \frac{R_{t-1}b_t}{P_t} + \tau_t + \int P_t(i)di + C(i_t) \]

- \[n_{t+1} \geq (1 - \phi_t)\lambda n_t^e + (1 - \theta)i_t^e \]
- \[b_{t+1}^e \geq 0 \]
- Solution: \[b_{t+1}^e = 0, c_t^e = 0, n_{t+1}^e = \lambda n_t + (1 - \theta)i_t^e \]

\[i_t^e = \frac{(r_t^k + \lambda\phi_tq_t)n_t + \frac{R_{t-1}b_t}{P_t} + \int P_t(i)di + C(i_t)}{p_t^l - \theta_tq_t} \]
Households’ FOCs

- Choose n_{t+1}, b_{t+1}, and c_t, subject to solution for i_t^e and hh’s level budget constraint:

$$c_t + p_t \kappa i_t^e + q_t(n_{t+1} - \kappa i_t^e) + \frac{b_{t+1}}{P_t} = (r_t^k + \lambda)n_t + \frac{R_{t-1}b_t}{P_t} + \int P_t(i)d\ i + C(i_t)$$
Households’ FOCs

- Choose \(n_{t+1}, b_{t+1}, \) and \(c_t \), subject to solution for \(i_t^e \) and hh’s level budget constraint:

\[
c_t + p_t^I \kappa i_t^e + q_t(n_{t+1} - \kappa i_t^e) + \frac{b_{t+1}}{P_t} = (r_t^k + \lambda)n_t + \frac{R_{t-1}b_t}{P_t} + \int P_t(i)di + C(i_t)
\]

- Euler:

\[
u_c(c_t, h_t) = \beta E_t \left[u_c(c_{t+1}, h_{t+1}) \left\{ \frac{R_t}{\pi_{t+1}} + \frac{\kappa(q_{t+1} - p_{t+1}^I)}{p_{t+1}^I - \theta_{t+1}q_{t+1}} \frac{R_t}{\pi_{t+1}} \right\} \right]
\]
Households’ FOCs

- Choose \(n_{t+1}, b_{t+1}, \text{and } c_t\), subject to solution for \(i_t^e\) and hh’s level budget constraint:

\[
c_t + p_t^l \kappa i_t^e + q_t(n_{t+1} - \kappa i_t^e) + \frac{b_{t+1}}{P_t} = (r^k_t + \lambda) n_t + \frac{R_{t-1}b_t}{P_t} + \int P_t(i)di + C(i_t)
\]

- Euler:

\[
u_c(c_t, h_t) = \beta E_t \left[u_c(c_{t+1}, h_{t+1}) \left\{ \frac{R_t}{\pi_{t+1}} + \frac{\kappa(q_{t+1} - p_{t+1}^l)}{p_{t+1} - \theta_{t+1}q_{t+1}} \frac{R_t}{\pi_{t+1}} \right\} \right]
\]

- Arbitrage:

\[E_t \left[u_c(c_{t+1}, h_{t+1}) \left\{ \frac{R_t}{\pi_{t+1}} \left(1 + \frac{\kappa(q_{t+1} - p_{t+1}^l)}{p_{t+1} - \theta_{t+1}q_{t+1}} \right)
ight.\right.
\[
- \frac{r^k_{t+1} + \lambda q_{t+1}}{q_t} \left(1 + \frac{\kappa(q_{t+1} - p_{t+1}^l)}{p_{t+1} - \theta_{t+1}q_{t+1}} \frac{r^k_{t+1} + \lambda q_{t+1}}{q_t} \right)\left\} \right\} = 0
\]
Households’ FOCs

- Choose n_{t+1}, b_{t+1}, and c_t, subject to solution for i_t^e and hh’s level budget constraint:

$$c_t + p_t^l \varepsilon i_t^e + q_t (n_{t+1} - \varepsilon i_t^e) + \frac{b_{t+1}}{P_t} = (r_t^k + \lambda) n_t + \frac{R_{t-1} b_t}{P_t} + \int P_t(i) di + C(i_t)$$

- Euler:

$$u_c(c_t, h_t) = \beta E_t \left[u_c(c_{t+1}, h_{t+1}) \left\{ \frac{R_t}{\pi_{t+1}} + \frac{\varepsilon(q_{t+1} - p_{t+1}^l)}{p_{t+1}^l - \theta_{t+1} q_{t+1}} \frac{R_t}{\pi_{t+1}} \right\} \right]$$

- Arbitrage:

$$E_t \left[u_c(c_{t+1}, h_{t+1}) \left\{ \frac{R_t}{\pi_{t+1}} (1 + \frac{\varepsilon(q_{t+1} - p_{t+1}^l)}{p_{t+1}^l - \theta_{t+1} q_{t+1}}) \right. \right.$$

$$- \frac{r_{t+1}^k + \lambda q_{t+1}}{q_t} (1 + \frac{\varepsilon(q_{t+1} - p_{t+1}^l)}{p_{t+1}^l - \theta_{t+1} q_{t+1}} \frac{r_{t+1}^k + \lambda \phi_{t+1} q_{t+1}}{r_{t+1}^k + \lambda q_{t+1}} \left. \right) \right] = 0$$

- Wage setting decision
The Role of Nominal Rigidities

\[y_t = i_t [1 + S \left(\frac{i_t}{i^*} \right)] + c_t \]
The Role of Nominal Rigidities

\[y_t = i_t [1 + S\left(\frac{i_t}{i^*}\right)] + c_t \]
Government

- Taylor rule:
 \[R_t = \max\{R_* (\pi_t / \pi_*)^{\psi_1}, 0\} \]

- Unconventional monetary policy:
 \[N^g_t = K_* \xi (\frac{\phi_t}{\phi_*} - 1) \]

Del Negro, Ferrero, Eggertsson, Kiyotaki The Great Escape?
Government

• Taylor rule:

\[R_t = \max\{R_*(\pi_t/\pi_*)^{\psi_1}, 0\} \]

• Unconventional monetary policy:

\[N_t^g = K_*\xi(\frac{\phi_t}{\phi_*} - 1) \]

• **Chicken**: Gvmt intervenes on the open market (does not relax individual agents constraints) ... but does have the power to issue liquid assets.
Government

• Taylor rule:

\[R_t = \max \{ R_* \left(\frac{\pi_t}{\pi_*} \right)^{\psi_1}, 0 \} \]

• Unconventional monetary policy:

\[N^g_t = K_* \xi \left(\frac{\phi_t}{\phi_*} - 1 \right) \]

• Chicken: Gvmt intervenes on the open market (does not relax individual agents constraints) ... but does have the power to issue liquid assets.

• Gvmt budget constraint, taxes:

\[\tau_t - B_{t+1} \frac{B_t}{P_t} + q_t N^g_{t+1} = (r^k_t + q_t \lambda) N^g_t - \frac{R_{t-1} B_t}{P_t} \]

\[\tau_t - \tau_* = \psi_3 \left(\left(\frac{R_{t-1} B_t}{P_t} - \frac{R_* B_*}{P_*} \right) - q_t N^g_t \right) \]
Equilibrium and solution of the Model

- All agents maximize subject to their constraints and markets clear

- Linearize model about constrained steady state

- Liquidity shock follows two-state Markov process (s.s. vs crisis)

- Explicitly take into account zero bound (Eggertsson and Woodford, 2002)
Liquidity Share: \[\frac{L}{L+qK} \]
Steady State as a Function of ϕ_*

(for $L_*/Y_* = .40$)

Liquidity share

Real return on liquid asset

Equity premium

q

% annualized

% annualized

% annualized

% annualized

Del Negro, Ferrero, Eggertsson, Kiyotaki

The Great Escape?
Calibration

• Impose $\phi = 18\%$ ($\theta = 20\%$) to obtain:
 1. steady state liquidity share of 13%
 2. real return on liquid assets of 1.75% (1952Q1:2008Q4)

• Probability of receiving investment opportunity: $\kappa = 5\%$
 Doms and Dunne (1998) and Cooper, Haltiwanger and Power (1999)

• Standard preferences: $u(c_t, h_t) = \frac{1}{1-\sigma} c_t^{1-\sigma} - \frac{\omega}{1+\nu} h_t^{1+\nu}$
 • Nominal rigidities: $\zeta_p = \zeta_w = .75$
 • Discount factor: $\beta = 0.99$
 • Intertemporal elasticity: $\sigma = 1$
 • Depreciation rate: $\lambda = 0.975$ (Annual depreciation = 10%)
 • Capital share: $\gamma = 0.4$
 • Taylor rule response to inflation: $\psi_1 = 1.5$
 • Inverse Frisch elasticity: $\nu = 1$
 • Investment adjustment costs: $S''(1) = 1$
Response of Macro Variables to a liquidity shock (with intervention)

- **Output**: % change from steady state over time (2006 to 2010)
- **Inflation**: Annualized % points over time (2006 to 2010)
- **Nominal Interest Rate**: Over time (2006 to 2010)
- **GDP**: Log-level (2008Q2 = 0) over time (2006 to 2010)
- **GDP Deflator**: Annualized % points over time (2006 to 2010)
- **FFR**: Over time (2006 to 2010)

Del Negro, Ferrero, Eggertsson, Kiyotaki - The Great Escape?
Calibration of the ϕ_t Shock and the Fed’s Response

Liquidity Share

Government Purchase of Private Equity

Del Negro, Ferrero, Eggertsson, Kiyotaki The Great Escape?
Response of C, I, Spreads, q to a liquidity shock (with intervention)

Del Negro, Ferrero, Eggertsson, Kiyotaki

The Great Escape?
Data: C, I, Spreads, q

Consumption

Investment

Empirical Spreads (1st P.C.)

Value of Capital

Del Negro, Ferrero, Eggertsson, Kiyotaki
The Great Escape?
The Effect of Policy Intervention

Output

% Δ from steady state

Quarters

Inflation

Annualized % points

% Δ from steady state

Quarters

Del Negro, Ferrero, Eggertsson, Kiyotaki The Great Escape?
The Great Escape?

Del Negro, Ferrero, Eggertsson, Kiyotaki
Multipliers

\[
E_0 \sum_{t=0}^{\infty} (\hat{Y}_t^I - \hat{Y}_t^N) \\
E_0 \sum_{t=0}^{\infty} \hat{N}_{t+1}^g
\]

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Great Escape</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full model</td>
<td>0.55</td>
<td>3.85</td>
</tr>
</tbody>
</table>

Baseline vs Great Escape
The Role of the Zero Bound

Del Negro, Ferrero, Eggertsson, Kiyotaki

The Great Escape?
The Role of the Nominal Rigidities

Output

Real Interest Rate

Investment

Consumption

% Δ from steady state

% Δ from steady state

Annualized % points

Quarters

Quarters

% Δ from steady state

% Δ from steady state

Del Negro, Ferrero, Eggertsson, Kiyotaki

The Great Escape?
Conclusions

1. Liquidity shocks as in Kiyotaki-Moore model can generate quantitatively large movements in real and financial variables → can explain some features of the crisis

2. Swap of liquid for illiquid assets (unconventional policy) is effective in reducing impact on spreads and real variables
 - How much should the central bank intervene via unconventional policy?
 - “Great escape” or “Great moral hazard”?

• Caveat: This is not a model for normative analysis!!!
Robustness to nominal rigidities

\[ZB-\text{model-LY0}_{\text{hi a f-calibshi a f}} \]

- [Graphs showing time series of economic variables like output (Y), inflation (π), and other indicators with different levels of rigidity (ζ).]

- A multiplier graph showing the effect of varying ζ from 0.66 to 0.85 on the multiplier.

- The graphs illustrate the impact of nominal rigidities on macroeconomic variables over time.
Investment Adjustment Costs

- Capital producers:

\[
\max_{l_t} C(l_t) = p_t l_t - l_t \left[1 + S\left(\frac{l_t}{l_*}\right)\right]
\]

with \(S(1) = S'(1) = 0, S''(1) > 0 \)

\[
\Rightarrow p_t = 1 + S\left(\frac{l_t}{l_*}\right) + S'\left(\frac{l_t}{l_*}\right) \frac{l_t}{l_*}
\]
Sticky Prices

- Monopolistic competitors produce intermediate goods with technology:

\[y_t(i) = A_t k_t(i) \gamma l_t(i)^{1-\gamma}, \]

subject to Calvo price rigidity \((\zeta_p)\).

- Final goods producers aggregate:

\[y_t = \left[\int_0^1 y_t(i) \frac{1}{1+\lambda_{f,t}} \, di \right]^{1+\lambda_{f,t}} \]

- Inflation determined by New-Keynesian Phillips curve
Paths for the Nominal Interest Rate

Nominal Interest Rate

- IRF
- Contingency

Quarters

Annualized % points

Del Negro, Ferrero, Eggertsson, Kiyotaki

The Great Escape?