KDI 한국개발연구원 - 경제정책정보 - 국내외연구자료 주제 - 경제일반 - 경제일반 -



유관기관의 다양한 자료를 한 곳에서 살펴보실 수 있습니다.


Using Machine Learning to Target Treatment: The Case of Household Energy Use

NBER 2020.01.02
We use causal forests to evaluate the heterogeneous treatment effects (TEs) of repeated behavioral nudges towards household energy conservation. The average response is a monthly electricity reduction of 9 kilowatt-hours (kWh), but the full distribution of responses ranges from -30 to +10 kWh. Selective targeting of treatment using the forest raises social net benefits by 12-120 percent, depending on the year and welfare function. Pre-treatment consumption and home value are the strongest predictors of treatment effect. We find suggestive evidence of a "boomerang effect": households with lower consumption than similar neighbors are the ones with positive TE estimates.

가입하신 이동통신사의 요금제에 따라
데이터 요금이 과다하게 부가될 수 있습니다.

파일을 다운로드하시겠습니까?
KDI 연구 카테고리